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The Idea of "Ray Casting" 

 In ancient time, it was used for the study of perspective 

Woodcut by Albrecht Dürer, 16th century 
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Ray Casting 

For every pixel 

 Construct a ray from the eye 

 For every object in the scene 

  Find intersection with the ray  

  Keep if closest 

Figure by  

Frédo Durand, MIT 

Used for hidden 

surface removal 
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Ray Casting and Shading 

For every pixel 

 Construct a ray from the eye 

 For every object in the scene 

  Find intersection with the ray  

  Keep if closest 

  Shade depending on light and normal vector 

Figure by  

Frédo Durand, MIT 

Shading can use  

Phong reflection model 
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Ray Tracing 

 From the closest intersection point, secondary rays are 

shot out 

 Reflection ray 

 Refraction ray 

 Shadow rays 

reflection 

Figure by  

Frédo Durand, MIT 
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Whitted Ray Tracing 

 We get 

 Hidden surface removal 

(from ray casting) 

 Reflection of light 

 Reflection / refraction of 

other objects 

 Shadows 

 All the above are obtained 

in one single framework 

 No ad-hoc add-on 

 However, it simulates only 

partial global illumination 

 Also called  

 Recursive Ray Tracing 
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Ray Tracing Details 

I = Ilocal + krg Ireflected + ktg Itransmitted 

where   Ilocal = Ia ka + Isource[ kd(NL) + kr(RV)n + kt(TV)m ] 
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Ray Tracing Details 

I = Ilocal + krg Ireflected + ktg Itransmitted 

where   Ilocal = Ia ka + Isource[ kd(NL) + kr(RV)n + kt(TV)m ] 
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Ray Tree 

Ray Tree 
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Shadow Rays 

 Also called  

light rays or shadow feelers  

 At each surface intersection point, 

a shadow ray is shot towards each 

light source to determine any 

occlusion between light source 

and surface point 

 Need to find only one opaque 

occluder to determine occlusion 

Ilocal = Ia ka + kshadow Isource[ kd(NL) + kr(RV)n + kt(TV)m ] 
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Shadow Rays 

 What if occluder is translucent? 

 Light is attenuated by the ktg of the occluder 

 Refraction of light ray from light source is ignored 

 Both are physically incorrect! 

 Why is this done this way? 
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Scene Description 

 Camera view & image resolution 

 Camera position and orientation in world coordinate frame 

 Similar to gluLookAt()  

 Field of view 

 Similar to gluPerspective(), but no need near & far plane 

 Image resolution 

 Number of pixels in each dimension 

 Each point light source 

 Position 

 Brightness and color (Isource,red, Isource,green, Isource,blue) 

 A global ambient (Ia,red, Ia,green, Ia,blue) 

 Spotlight is also possible 

Ilocal = Ia ka +  

          Isource[ kd(NL) + kr(RV)n + kt(TV)m ] 
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Scene Description 

 

 

 Each object surface material 

 krg, ktg, ka, kd, kr, kt (each is a RGB vector) 

 n, m 

 Refractive index  if ktg  0 or kt  0 

 Objects 

 Implicit representations (e.g. plane, sphere, quadrics) 

 Polygon 

 Parametric (e.g. bicubic Bezier patches) 

 Volumetric  

I = Ilocal + krg Ireflected + ktg Itransmitted 

where   Ilocal = Ia ka + Isource[ kd(NL) + kr(RV)n + kt(TV)m ] 

Can use different  

for R, G & B. 
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Recursive Ray Tracing 

 For each reflection/refraction ray spawned, we can trace 

it just like tracing the original ray 

 Implemented using recursion 
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Recursive Ray Tracing 

0 recursion 1 recursions 2 recursions 
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Recursive Ray Tracing 

 When to stop recursion? 

 When the surface is totally diffuse (and opaque) 

 

 When reflected/refracted ray hits nothing 

 

 When maximum recursion depth is reached 

 

 When the contribution of the reflected/refracted ray to the 

color at the top level is too small 

 (krg1 | ktg1)  ...  (krg(n1) | ktg(n1)) < threshold  
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Adventures of Seven Rays 
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Ray Representations 

 Finding ray-object intersection and computing surface normal 

is central to ray tracing 

 Ray representations 

 Two 3D vectors 

 Ray origin position 

 Ray direction vector 

 Parametric form 

 P(t) = origin  +  t  direction 

origin 

direction 

P(t) 
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Computing Reflection / Refraction Rays 
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Ray-Plane Intersection 

 Plane is often represented in implicit form 

 Ax + By + Cz + D = 0 

 Equivalent to NP + D = 0 

 where N = [A B C]T and P = [x y z]T 

 To find ray-plane intersection, substitute ray equation P(t) into plane 

equation 

 We get NP(t) + D = 0 

 Solve for t  to get t0 

 If t0 is infinity, no intersection (ray is parallel to plane) 

 Intersection point is P(t0) 

 Verify that intersection is not behind ray origin, i.e. t0  0  

 The normal at the intersection is N (or N) 
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Ray-Sphere Intersection 

 Sphere (centered at origin) is often represented in implicit form 

 x2 + y2 + z2  r2 = 0 

 Equivalent to PP  r2 = 0 

 where P = [x y z]T 

 To find ray-sphere intersection, substitute ray equation P(t) 

into sphere equation 

 We get P(t)P(t)  r2 = 0 

P(t)P(t)  r2 = 0 

(Ro + tRd)(Ro + tRd)  r2 = 0 

RdRd t
2 + 2 RdRo t + RoRo  r2 = 0 

Ro is ray origin 

Rd is ray direction 
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Ray-Sphere Intersection 

 It is a quadratic equation in the form at2 + bt + c = 0 

 a = RdRd = 1 (since |Rd| = 1) 

 b = 2 RdRo  

 c = RoRo  r2 

 Discriminant, d = b2  4ac 

 Solutions, t = (b  d ) / (2a) 

 Three cases to consider depending on value of d 

 What are the 3 cases? What do they correspond to? 

 Choose t0 as the closest positive t value (t+ or t) 

 The normal at the intersection point is P(t0) / |P(t0)| 
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Ray-Sphere Intersection 

 Very easy to compute, that is why most ray tracing 

images have spheres 

 

 What if sphere is not centered at origin? 

 Transform the ray to the sphere's local coordinate frame 

 How to transform? Need to consider rotation? 
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Ray-Box Intersection 

 A 3D box is defined by 3 pairs of parallel planes, where 

each pair is orthogonal to the other two pairs 

 If 3D box is axis-aligned, only need to specify the 

coordinates of the two diagonally opposite corners 

 The 3 pairs of planes can be deduced easily 
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Ray-Box Intersection 

 To find ray-box intersection 

 For each pair of parallel plane, find the distance to the first plane 

(tnear) and to the second plane (tfar) 

 Keep the largest tnear so far, and smallest tfar so far 

 If largest tnear > smallest tfar, no intersection 

 Otherwise, the intersection is at P(largest tnear) 
How to find 

normal vector? 
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Ray-Triangle Intersection 

 Finding intersection between a ray and a general polygon 

is difficult 

 1) Compute ray-plane intersection 

 2) Determine whether intersection is within polygon 

 Tedious for non-convex polygon 

 Interpolation of attributes at the vertices are not well-

defined 

 Much easier to find ray-triangle intersection 

 Can use the barycentric coordinates method 

 Interpolation of attributes at the vertices are well-defined 

using the barycentric coordinates 



27 

Barycentric Coordinates 

 The barycentric coordinates of a point P on a triangle 

ABC is (, , ) such that 

P = A + B + C    where   +  +  = 1  and  0  , ,   1 

 We can rewrite it as 

P = (1)A + B + C 

P = A + (BA) + (CA) 

 

B 

Ro Rd 

C 

A 
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Barycentric Coordinates 

 To find ray-triangle intersection, we let 

P(t) = A + (BA) + (CA) 

Ro + tRd = A + (BA) + (CA) 

 Solve for t,  and  

 Intersection if  +  < 1  &  ,  > 0  &  t > 0 

B 

Ro Rd 

C 

A 

P 
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Barycentric Coordinates 

 Expand  Ro + tRd = A + (BA) + (CA) 

Rox + tRdx = Ax + (BxAx) + (CxAx) 

Roy + tRdy = Ay + (ByAy) + (CyAy) 

Roz + tRdz = Az + (BzAz) + (CzAz) 

 

 Regroup and write in matrix form 
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30 

Barycentric Coordinates 

 Use Cramer's Rule to solve for t,  and  
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  
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determinant 
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Advantages of Barycentric Intersection 

 Efficient 

 No need to store plane equation 

 Barycentric coordinates are useful for linear interpolation 

of normal vectors, texture coordinates, and other 

attributes at the vertices 

 For example, the interpolated normal at P is 

NP = (1)NA + NB + NC   (should do a normalization) 
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The "Epsilon" Problem 

 Should not accept intersection for very small positive t 

 May falsely intersect the surface at the ray origin 

 Method 1: Use an epsilon value  > 0, and accept an 

intersection only if its t >  

 Method 2: When a new ray is spawned, advanced the ray 

origin by an epsilon distance  in the ray direction 

 

with  without  
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The "Epsilon" Problem 

with  without  
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Ray Tracing Acceleration 

 Most ray tracing research have been in 

 Acceleration techniques for ray-scene intersection 

 Extension to simulate more complete global illumination (in 
a later lecture) 

 Real-time ray tracing! 

 Some common acceleration techniques 

 Adaptive recursion depth control 

 First-hit speed-up using z-buffer method 

 Can use item buffer to identify first-hit object at each pixel 

 Bounding volumes 

 Bounding volume hierarchies 

 Spatial subdivision 
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Bounding Volumes 

 Use a simple shape to enclose each more complex object 

 If ray does not intersect bounding volume, no need to test 

complex object (quick reject) 

 Simple shapes are efficient for testing ray intersection 

 Common bounding volumes are spheres, AABBs (axis-aligned 

bounding boxes), and OBBs (oriented bounding boxes) 

 However, there is trade-off between intersection efficiency and 

tightness 
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Bounding Volume Hierarchy 

 Can organized bounding volumes into hierarchy 

 However, good hierarchies are usually constructed 

manually  
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Spatial Subdivision 

 Subdivide 3D space into regions, and associate each 
region with a list of objects that occupy (fully or partially) 
the region 

 When a ray is traced into a region, query the object list 
and perform intersection tests with the objects 

 Since we are looking for the nearest intersection, the ray 
should be traced in a front-to-back order through the 
regions 

 Common spatial subdivisions for ray tracing 

 Uniform grid 

 Octree 

 BSP 
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Octree 

 Each cubic region is conditionally and  

recursively subdivided into 8 equal sub-regions 

 

 Different possible conditions for subdivision 

 Scheme 1: Subdivide a cell if it is occupied by  

more than one object 

 Scheme 2: Subdivide a cell if it is occupied by  

any object until the maximum allowable depth 

 

 Ray-cell intersection can be easily tested in 

front-to-back order  
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Octree Cell Subdivision Schemes 

Scheme 1: Subdivide a 

cell if it is occupied by  

more than one object 

Scheme 2: Subdivide a cell if it is 

occupied by any object until the 

maximum allowable depth 
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Limitations Of Whitted Ray Tracing 

 Hard shadows 

 Inconsistency between highlights and reflections 

 Sharp reflections but blurred highlights 

 Aliasing (jaggies) 
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Limitations Of Whitted Ray Tracing 

 Compute only a subset of light transports 

 For example, cannot simulate caustics, and color bleeding 

 

Color bleeding caused by 

diffuse-to-diffuse interactions 

Caustics caused by 

focusing of light 
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Distributed Ray Tracing 

 For each pixel, shoot multiple random rays 

 At each intersection, the reflection, refraction & shadow 

rays are randomly perturbed (according to some 

distributions) 

Stratified or 

jittered sampling 
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Distributed Ray Tracing 

 Able to simulate the followings 

 Area lights and soft shadows 

 Blurred reflections and refractions 

 Anti-aliasing 

 Depth of field 

 Motion blur 

 

 However, it does not increase the subset of light 

transports simulated by Whitted ray tracing 
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Area Lights & Soft Shadows 
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Glossy Reflections 
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Depth Of Field Effect & Motion Blur 
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End of Lecture 9 


