
RI3004A

3D Graphics Rendering

Lecture 9

Ray Tracing

NUSRI Summer Programme 2016

School of Computing
National University of Singapore

2

The Idea of "Ray Casting"

 In ancient time, it was used for the study of perspective

Woodcut by Albrecht Dürer, 16th century

3

Ray Casting

For every pixel

 Construct a ray from the eye

 For every object in the scene

 Find intersection with the ray

 Keep if closest

Figure by

Frédo Durand, MIT

Used for hidden

surface removal

4

Ray Casting and Shading

For every pixel

 Construct a ray from the eye

 For every object in the scene

 Find intersection with the ray

 Keep if closest

 Shade depending on light and normal vector

Figure by

Frédo Durand, MIT

Shading can use

Phong reflection model

5

Ray Tracing

 From the closest intersection point, secondary rays are

shot out

 Reflection ray

 Refraction ray

 Shadow rays

reflection

Figure by

Frédo Durand, MIT

6

Whitted Ray Tracing

 We get

 Hidden surface removal

(from ray casting)

 Reflection of light

 Reflection / refraction of

other objects

 Shadows

 All the above are obtained

in one single framework

 No ad-hoc add-on

 However, it simulates only

partial global illumination

 Also called

 Recursive Ray Tracing

7

Ray Tracing Details

I = Ilocal + krg Ireflected + ktg Itransmitted

where Ilocal = Ia ka + Isource[kd(NL) + kr(RV)n + kt(TV)m]

8

Ray Tracing Details

I = Ilocal + krg Ireflected + ktg Itransmitted

where Ilocal = Ia ka + Isource[kd(NL) + kr(RV)n + kt(TV)m]



N



L R

V

N





1

2

L

T
V

9

Ray Tree

Ray Tree

10

Shadow Rays

 Also called

light rays or shadow feelers

 At each surface intersection point,

a shadow ray is shot towards each

light source to determine any

occlusion between light source

and surface point

 Need to find only one opaque

occluder to determine occlusion

Ilocal = Ia ka + kshadow Isource[kd(NL) + kr(RV)n + kt(TV)m]

11

Shadow Rays

 What if occluder is translucent?

 Light is attenuated by the ktg of the occluder

 Refraction of light ray from light source is ignored

 Both are physically incorrect!

 Why is this done this way?

12

Scene Description

 Camera view & image resolution

 Camera position and orientation in world coordinate frame

 Similar to gluLookAt()

 Field of view

 Similar to gluPerspective(), but no need near & far plane

 Image resolution

 Number of pixels in each dimension

 Each point light source

 Position

 Brightness and color (Isource,red, Isource,green, Isource,blue)

 A global ambient (Ia,red, Ia,green, Ia,blue)

 Spotlight is also possible

Ilocal = Ia ka +

 Isource[kd(NL) + kr(RV)n + kt(TV)m]

13

Scene Description

 Each object surface material

 krg, ktg, ka, kd, kr, kt (each is a RGB vector)

 n, m

 Refractive index  if ktg  0 or kt  0

 Objects

 Implicit representations (e.g. plane, sphere, quadrics)

 Polygon

 Parametric (e.g. bicubic Bezier patches)

 Volumetric

I = Ilocal + krg Ireflected + ktg Itransmitted

where Ilocal = Ia ka + Isource[kd(NL) + kr(RV)n + kt(TV)m]

Can use different 

for R, G & B.

14

Recursive Ray Tracing

 For each reflection/refraction ray spawned, we can trace

it just like tracing the original ray

 Implemented using recursion

15

Recursive Ray Tracing

0 recursion 1 recursions 2 recursions

16

Recursive Ray Tracing

 When to stop recursion?

 When the surface is totally diffuse (and opaque)

 When reflected/refracted ray hits nothing

 When maximum recursion depth is reached

 When the contribution of the reflected/refracted ray to the

color at the top level is too small

 (krg1 | ktg1)  ...  (krg(n1) | ktg(n1)) < threshold

17

Adventures of Seven Rays

18

Ray Representations

 Finding ray-object intersection and computing surface normal

is central to ray tracing

 Ray representations

 Two 3D vectors

 Ray origin position

 Ray direction vector

 Parametric form

 P(t) = origin + t  direction

origin

direction

P(t)

19

Computing Reflection / Refraction Rays



N





1

2

L R

T

Reflection

  LNLN

LNR





2

cos 2 

Refraction

  
     NLNLNL

NcoscosLT

 11

 11

22

22

21













 sin sinθ 21 

Snell’s law

20

Ray-Plane Intersection

 Plane is often represented in implicit form

 Ax + By + Cz + D = 0

 Equivalent to NP + D = 0

 where N = [A B C]T and P = [x y z]T

 To find ray-plane intersection, substitute ray equation P(t) into plane

equation

 We get NP(t) + D = 0

 Solve for t to get t0

 If t0 is infinity, no intersection (ray is parallel to plane)

 Intersection point is P(t0)

 Verify that intersection is not behind ray origin, i.e. t0  0

 The normal at the intersection is N (or N)

21

Ray-Sphere Intersection

 Sphere (centered at origin) is often represented in implicit form

 x2 + y2 + z2  r2 = 0

 Equivalent to PP  r2 = 0

 where P = [x y z]T

 To find ray-sphere intersection, substitute ray equation P(t)

into sphere equation

 We get P(t)P(t)  r2 = 0

P(t)P(t)  r2 = 0

(Ro + tRd)(Ro + tRd)  r2 = 0

RdRd t
2 + 2 RdRo t + RoRo  r2 = 0

Ro is ray origin

Rd is ray direction

22

Ray-Sphere Intersection

 It is a quadratic equation in the form at2 + bt + c = 0

 a = RdRd = 1 (since |Rd| = 1)

 b = 2 RdRo

 c = RoRo  r2

 Discriminant, d = b2  4ac

 Solutions, t = (b  d) / (2a)

 Three cases to consider depending on value of d

 What are the 3 cases? What do they correspond to?

 Choose t0 as the closest positive t value (t+ or t)

 The normal at the intersection point is P(t0) / |P(t0)|

23

Ray-Sphere Intersection

 Very easy to compute, that is why most ray tracing

images have spheres

 What if sphere is not centered at origin?

 Transform the ray to the sphere's local coordinate frame

 How to transform? Need to consider rotation?

24

Ray-Box Intersection

 A 3D box is defined by 3 pairs of parallel planes, where

each pair is orthogonal to the other two pairs

 If 3D box is axis-aligned, only need to specify the

coordinates of the two diagonally opposite corners

 The 3 pairs of planes can be deduced easily

25

Ray-Box Intersection

 To find ray-box intersection

 For each pair of parallel plane, find the distance to the first plane

(tnear) and to the second plane (tfar)

 Keep the largest tnear so far, and smallest tfar so far

 If largest tnear > smallest tfar, no intersection

 Otherwise, the intersection is at P(largest tnear)
How to find

normal vector?

26

Ray-Triangle Intersection

 Finding intersection between a ray and a general polygon

is difficult

 1) Compute ray-plane intersection

 2) Determine whether intersection is within polygon

 Tedious for non-convex polygon

 Interpolation of attributes at the vertices are not well-

defined

 Much easier to find ray-triangle intersection

 Can use the barycentric coordinates method

 Interpolation of attributes at the vertices are well-defined

using the barycentric coordinates

27

Barycentric Coordinates

 The barycentric coordinates of a point P on a triangle

ABC is (, , ) such that

P = A + B + C where  +  +  = 1 and 0  , ,   1

 We can rewrite it as

P = (1)A + B + C

P = A + (BA) + (CA)

B

Ro Rd

C

A

P

28

Barycentric Coordinates

 To find ray-triangle intersection, we let

P(t) = A + (BA) + (CA)

Ro + tRd = A + (BA) + (CA)

 Solve for t,  and 

 Intersection if  +  < 1 & ,  > 0 & t > 0

B

Ro Rd

C

A

P

29

Barycentric Coordinates

 Expand Ro + tRd = A + (BA) + (CA)

Rox + tRdx = Ax + (BxAx) + (CxAx)

Roy + tRdy = Ay + (ByAy) + (CyAy)

Roz + tRdz = Az + (BzAz) + (CzAz)

 Regroup and write in matrix form

   





 

 

oz z

oy y

ox x

dz z z z z

dy y y y y

dx x x x x

R A

R A

R A

R C A B A

R C A B A

R C A B A



















































t





3 equations,

3 unknowns

30

Barycentric Coordinates

 Use Cramer's Rule to solve for t,  and 

A

R R A B A

R R A B A

R R A B A

dz oz z z z

dy oy y y y

dx ox x x x

 

 

 

 

A

R A C A B A

R A C A B A

R A C A B A

t
oz z z z z z

oy y y y y y

ox x x x x x

  

  

  



A

R C A R A

R C A R A

R C A R A

dz z z oz z

dy y y oy y

dx x x ox x

 

 

 

 

| | denotes the

determinant

31

Advantages of Barycentric Intersection

 Efficient

 No need to store plane equation

 Barycentric coordinates are useful for linear interpolation

of normal vectors, texture coordinates, and other

attributes at the vertices

 For example, the interpolated normal at P is

NP = (1)NA + NB + NC (should do a normalization)

32

The "Epsilon" Problem

 Should not accept intersection for very small positive t

 May falsely intersect the surface at the ray origin

 Method 1: Use an epsilon value  > 0, and accept an

intersection only if its t > 

 Method 2: When a new ray is spawned, advanced the ray

origin by an epsilon distance  in the ray direction

with  without 

33

The "Epsilon" Problem

with  without 

34

Ray Tracing Acceleration

 Most ray tracing research have been in

 Acceleration techniques for ray-scene intersection

 Extension to simulate more complete global illumination (in
a later lecture)

 Real-time ray tracing!

 Some common acceleration techniques

 Adaptive recursion depth control

 First-hit speed-up using z-buffer method

 Can use item buffer to identify first-hit object at each pixel

 Bounding volumes

 Bounding volume hierarchies

 Spatial subdivision

35

Bounding Volumes

 Use a simple shape to enclose each more complex object

 If ray does not intersect bounding volume, no need to test

complex object (quick reject)

 Simple shapes are efficient for testing ray intersection

 Common bounding volumes are spheres, AABBs (axis-aligned

bounding boxes), and OBBs (oriented bounding boxes)

 However, there is trade-off between intersection efficiency and

tightness

36

Bounding Volume Hierarchy

 Can organized bounding volumes into hierarchy

 However, good hierarchies are usually constructed

manually

37

Spatial Subdivision

 Subdivide 3D space into regions, and associate each
region with a list of objects that occupy (fully or partially)
the region

 When a ray is traced into a region, query the object list
and perform intersection tests with the objects

 Since we are looking for the nearest intersection, the ray
should be traced in a front-to-back order through the
regions

 Common spatial subdivisions for ray tracing

 Uniform grid

 Octree

 BSP

38

Octree

 Each cubic region is conditionally and

recursively subdivided into 8 equal sub-regions

 Different possible conditions for subdivision

 Scheme 1: Subdivide a cell if it is occupied by

more than one object

 Scheme 2: Subdivide a cell if it is occupied by

any object until the maximum allowable depth

 Ray-cell intersection can be easily tested in

front-to-back order

39

Octree Cell Subdivision Schemes

Scheme 1: Subdivide a

cell if it is occupied by

more than one object

Scheme 2: Subdivide a cell if it is

occupied by any object until the

maximum allowable depth

40

Limitations Of Whitted Ray Tracing

 Hard shadows

 Inconsistency between highlights and reflections

 Sharp reflections but blurred highlights

 Aliasing (jaggies)

41

Limitations Of Whitted Ray Tracing

 Compute only a subset of light transports

 For example, cannot simulate caustics, and color bleeding

Color bleeding caused by

diffuse-to-diffuse interactions

Caustics caused by

focusing of light

42

Distributed Ray Tracing

 For each pixel, shoot multiple random rays

 At each intersection, the reflection, refraction & shadow

rays are randomly perturbed (according to some

distributions)

Stratified or

jittered sampling

43

Distributed Ray Tracing

 Able to simulate the followings

 Area lights and soft shadows

 Blurred reflections and refractions

 Anti-aliasing

 Depth of field

 Motion blur

 However, it does not increase the subset of light

transports simulated by Whitted ray tracing

44

Area Lights & Soft Shadows

45

Glossy Reflections

46

Depth Of Field Effect & Motion Blur

47

End of Lecture 9

