NUSRI Summer Programme 2016

RI3004A 3D Graphics Rendering

Lecture 9 Ray Tracing

School of Computing
National University of Singapore

The Idea of "Ray Casting"

- In ancient time, it was used for the study of perspective

Woodcut by Albrecht Dürer, 16th century

Ray Casting

For every pixel
Construct a ray from the eye
For every object in the scene
Find intersection with the ray
Keep if closest

Used for hidden surface removal

Ray Casting and Shading

For every pixel
Construct a ray from the eye
For every object in the scene
Find intersection with the ray
Keep if closest
Shade depending on light and normal vector

Ray Tracing

- From the closest intersection point, secondary rays are shot out
- Reflection ray
- Refraction ray
- Shadow rays

Whitted Ray Tracing

- We get
- Hidden surface removal (from ray casting)
- Reflection of light
- Reflection / refraction of other objects
- Shadows
- All the above are obtained in one single framework
- No ad-hoc add-on
- However, it simulates only partial global illumination
- Also called
- Recursive Ray Tracing

Ray Tracing Details

$$
\begin{array}{cc}
\boldsymbol{I}=\boldsymbol{I}_{\text {local }}+\boldsymbol{k}_{\text {rg }} \boldsymbol{I}_{\text {reflected }}+\boldsymbol{k}_{\mathbf{t g}} \boldsymbol{I}_{\text {transmitted }} \\
\text { where } & I_{\text {local }}=I_{\mathrm{a}} k_{\mathrm{a}}+I_{\text {source }}\left[k_{\mathrm{d}}(\boldsymbol{N} \cdot \boldsymbol{L})+k_{\mathrm{r}}(\boldsymbol{R} \cdot \boldsymbol{V})^{n}+k_{\mathrm{t}}(\boldsymbol{T} \cdot \boldsymbol{V})^{m}\right]
\end{array}
$$

Ray Tracing Details

Ray Tree

Shadow Rays

- Also called light rays or shadow feelers
- At each surface intersection point, a shadow ray is shot towards each light source to determine any occlusion between light source and surface point
- Need to find only one opaque
 occluder to determine occlusion

$$
I_{\text {local }}=I_{\mathrm{a}} k_{\mathrm{a}}+\boldsymbol{k}_{\text {shadow }} I_{\text {source }}\left[k_{\mathrm{d}}(\boldsymbol{N} \cdot \boldsymbol{L})+k_{\mathrm{r}}(\boldsymbol{R} \cdot \boldsymbol{V})^{n}+k_{\mathrm{t}}(\boldsymbol{T} \cdot \boldsymbol{V})^{m}\right]
$$

Shadow Rays

- What if occluder is translucent?
- Light is attenuated by the k_{tg} of the occluder
- Refraction of light ray from light source is ignored
- Both are physically incorrect!
- Why is this done this way?

Scene Description

- Camera view \& image resolution
- Camera position and orientation in world coordinate frame
- Similar to gluLookAt ()
- Field of view
- Similar to gluPerspective (), but no need near \& far plane
- Image resolution
- Number of pixels in each dimension
- Each point light source
- Position

$$
\begin{aligned}
I_{\text {local }}= & I_{\mathrm{a}} k_{\mathrm{a}}+ \\
& I_{\text {source }}\left[k_{\mathrm{d}}(\boldsymbol{N} \cdot \boldsymbol{L})+k_{\mathrm{r}}(\boldsymbol{R} \cdot \boldsymbol{V})^{n}+k_{\mathrm{t}}(\boldsymbol{T} \cdot \boldsymbol{V})^{m}\right]
\end{aligned}
$$

- Brightness and color ($\left.I_{\text {source, red }}, I_{\text {source,green }}, I_{\text {source,blue }}\right)$
- A global ambient ($I_{\text {a,red }}, I_{\text {a,green }}, I_{\text {a,blue }}$)
- Spotlight is also possible

Scene Description

$$
I=I_{\text {local }}+k_{\mathrm{rg}} I_{\text {reflected }}+k_{\mathrm{tg}} I_{\text {transmitted }}
$$

$$
\text { where } \quad I_{\text {local }}=I_{\mathrm{a}} k_{\mathrm{a}}+I_{\text {source }}\left[k_{\mathrm{d}}(\boldsymbol{N} \cdot \boldsymbol{L})+k_{\mathrm{r}}(\boldsymbol{R} \cdot \boldsymbol{V})^{n}+k_{\mathrm{t}}(\boldsymbol{T} \cdot \boldsymbol{V})^{m}\right]
$$

- Each object surface material

ㅁ $k_{\mathrm{rg}}, k_{\mathrm{tg}}, k_{\mathrm{a}}, k_{\mathrm{d}}, k_{\mathrm{r}}, k_{\mathrm{t}}$ (each is a RGB vector)
ㅁ n, m

- Refractive index μ if $k_{\mathrm{tg}} \neq \mathbf{0}$ or $k_{\mathrm{t}} \neq \mathbf{0}$

Can use different μ for R, G \& B.

- Objects
- Implicit representations (e.g. plane, sphere, quadrics)
- Polygon
- Parametric (e.g. bicubic Bezier patches)
- Volumetric

Recursive Ray Tracing

- For each reflection/refraction ray spawned, we can trace it just like tracing the original ray
- Implemented using recursion

$$
\begin{aligned}
I(\boldsymbol{P}) & =I_{\text {local }}(\boldsymbol{P})+I_{\text {global }}(\boldsymbol{P}) \\
& =I_{\text {local }}(\boldsymbol{P})+k_{\mathrm{rg}} I\left(\boldsymbol{P}_{\mathrm{r}}\right)+k_{\mathrm{tg}} I\left(\boldsymbol{P}_{\mathrm{t}}\right)
\end{aligned}
$$

where:
\boldsymbol{P} is the hit point
$\boldsymbol{P}_{\mathrm{r}}$ is the hit point discovered by tracing the reflected ray from \boldsymbol{P}
$\boldsymbol{P}_{\mathrm{t}}$ is the hit point discovered by tracing the transmitted ray from \boldsymbol{P}
k_{rg} is the global reflection coefficient
k_{tg} is the global transmitted coefficient

Recursive Ray Tracing

Recursive Ray Tracing

- When to stop recursion?
- When the surface is totally diffuse (and opaque)
- When reflected/refracted ray hits nothing
- When maximum recursion depth is reached
- When the contribution of the reflected/refracted ray to the color at the top level is too small
- $\left(k_{\mathrm{rg} 1} \mid k_{\operatorname{tg} 1}\right) \times \ldots \times\left(k_{\operatorname{rg}(n-1)} \mid k_{\operatorname{tg}(n-1)}\right)<$ threshold

Adventures of Seven Rays

Ray Representations

- Finding ray-object intersection and computing surface normal is central to ray tracing
- Ray representations
- Two 3D vectors
- Ray origin position
- Ray direction vector
- Parametric form
- $\boldsymbol{P}(t)=$ origin $+t \times$ direction

Computing Reflection / Refraction Rays

Reflection

$$
\begin{aligned}
R & =2 N \cos \theta-L \\
& =2(N \bullet L) N-L
\end{aligned}
$$

Refraction

$$
\begin{aligned}
\mu & =\mu_{1} / \mu_{2} \\
T & =-\mu L+\left(\mu \cos \theta-\sqrt{\left.1-\mu^{2}\left(1-\cos ^{2} \theta\right)\right)}\right) N \\
& =-\mu L+\left(\mu(N \bullet L)-\sqrt{1-\mu^{2}\left(1-(N \bullet L)^{2}\right)}\right) N
\end{aligned}
$$

Ray-Plane Intersection

- Plane is often represented in implicit form
- $A x+B y+C z+D=0$
- Equivalent to $N \cdot \boldsymbol{P}+D=0$
- where $\boldsymbol{N}=\left[\begin{array}{lll}A & B & C\end{array}\right]^{\mathrm{T}}$ and $\boldsymbol{P}=\left[\begin{array}{ll}x & y \\ z\end{array}\right]^{\mathrm{T}}$
- To find ray-plane intersection, substitute ray equation $\boldsymbol{P}(t)$ into plane equation
- We get $\boldsymbol{N} \cdot \boldsymbol{P}(t)+D=0$
- Solve for t to get t_{0}
- If t_{0} is infinity, no intersection (ray is parallel to plane)
- Intersection point is $\boldsymbol{P}\left(t_{0}\right)$
- Verify that intersection is not behind ray origin, i.e. $t_{0}>0$
- The normal at the intersection is $N($ or $-N)$

Ray-Sphere Intersection

- Sphere (centered at origin) is often represented in implicit form
- $x^{2}+y^{2}+z^{2}-r^{2}=0$
- Equivalent to $\boldsymbol{P} \cdot \boldsymbol{P}-r^{2}=0$
- where $\boldsymbol{P}=\left[\begin{array}{ll}x & y \\ z\end{array}\right]^{\mathrm{T}}$
- To find ray-sphere intersection, substitute ray equation $\boldsymbol{P}(t)$ into sphere equation
- We get $\boldsymbol{P}(t) \cdot \boldsymbol{P}(t)-r^{2}=0$

$$
\begin{aligned}
& \boldsymbol{P}(t) \cdot \boldsymbol{P}(t)-r^{2}=0 \\
& \left(\boldsymbol{R}_{\mathrm{o}}+t \boldsymbol{R}_{\mathrm{d}}\right) \cdot\left(\boldsymbol{R}_{\mathrm{o}}+t \boldsymbol{R}_{\mathrm{d}}\right)-r^{2}=0 \\
& \boldsymbol{R}_{\mathrm{d}} \cdot \boldsymbol{R}_{\mathrm{d}} t^{2}+2 \boldsymbol{R}_{\mathrm{d}} \cdot \boldsymbol{R}_{\mathrm{o}} t+\boldsymbol{R}_{\mathrm{o}} \cdot \boldsymbol{R}_{\mathrm{o}}-r^{2}=0
\end{aligned}
$$

$\boldsymbol{R}_{\mathrm{o}}$ is ray origin
$\boldsymbol{R}_{\mathrm{d}}$ is ray direction

Ray-Sphere Intersection

- It is a quadratic equation in the form $a t^{2}+b t+c=0$

$$
\begin{aligned}
& \text { ㅁ } a=\boldsymbol{R}_{\mathrm{d}} \cdot \boldsymbol{R}_{\mathrm{d}}=1\left(\text { since }\left|\boldsymbol{R}_{\mathrm{d}}\right|=1\right) \\
& \text { ㅁ } b=2 \boldsymbol{R}_{\mathrm{d}} \cdot \boldsymbol{R}_{\mathrm{o}} \\
& \text { व } c=\boldsymbol{R}_{\mathrm{o}} \cdot \boldsymbol{R}_{\mathrm{o}}-r^{2}
\end{aligned}
$$

- Discriminant, $d=b^{2}-4 a c$
- Solutions, $t_{ \pm}=(-b \pm \sqrt{ } d) /(2 a)$
- Three cases to consider depending on value of d
- What are the 3 cases? What do they correspond to?
- Choose t_{0} as the closest positive t value (t_{+}or t_{-})
- The normal at the intersection point is $\boldsymbol{P}\left(t_{0}\right) /\left|\boldsymbol{P}\left(t_{0}\right)\right|$

Ray-Sphere Intersection

- Very easy to compute, that is why most ray tracing images have spheres
- What if sphere is not centered at origin?
- Transform the ray to the sphere's local coordinate frame
- How to transform? Need to consider rotation?

Ray-Box Intersection

- A 3D box is defined by 3 pairs of parallel planes, where each pair is orthogonal to the other two pairs
- If 3D box is axis-aligned, only need to specify the coordinates of the two diagonally opposite corners
- The 3 pairs of planes can be deduced easily

Ray-Box Intersection

- To find ray-box intersection
- For each pair of parallel plane, find the distance to the first plane ($t_{\text {near }}$) and to the second plane ($t_{\text {far }}$)
- Keep the largest $t_{\text {near }}$ so far, and smallest $t_{\text {far }}$ so far

ㅁ. If largest $t_{\text {near }}>$ smallest $t_{\text {far }}$, no intersection

- Otherwise, the intersection is at \boldsymbol{P} (largest $t_{\text {near }}$)

Ray-Triangle Intersection

- Finding intersection between a ray and a general polygon is difficult
- 1) Compute ray-plane intersection
- 2) Determine whether intersection is within polygon
- Tedious for non-convex polygon
- Interpolation of attributes at the vertices are not welldefined
- Much easier to find ray-triangle intersection
- Can use the barycentric coordinates method
- Interpolation of attributes at the vertices are well-defined using the barycentric coordinates

Barycentric Coordinates

- The barycentric coordinates of a point \boldsymbol{P} on a triangle $\boldsymbol{A B C}$ is (α, β, γ) such that

$$
\boldsymbol{P}=\alpha \boldsymbol{A}+\beta \boldsymbol{B}+\gamma \boldsymbol{C} \quad \text { where } \alpha+\beta+\gamma=1 \text { and } 0 \leq \alpha, \beta, \gamma \leq 1
$$

- We can rewrite it as

$$
\begin{aligned}
& \boldsymbol{P}=(1-\beta-\gamma) \boldsymbol{A}+\beta \boldsymbol{B}+\gamma \boldsymbol{C} \\
& \boldsymbol{P}=\boldsymbol{A}+\beta(\boldsymbol{B}-\boldsymbol{A})+\gamma(\boldsymbol{C}-\boldsymbol{A})
\end{aligned}
$$

Barycentric Coordinates

- To find ray-triangle intersection, we let

$$
\begin{aligned}
& \boldsymbol{P}(t)=\boldsymbol{A}+\beta(\boldsymbol{B}-\boldsymbol{A})+\gamma(\boldsymbol{C}-\boldsymbol{A}) \\
& \boldsymbol{R}_{\mathrm{o}}+t \boldsymbol{R}_{\mathrm{d}}=\boldsymbol{A}+\beta(\boldsymbol{B}-\boldsymbol{A})+\gamma(\boldsymbol{C}-\boldsymbol{A})
\end{aligned}
$$

- Solve for t, β and γ
- Intersection if $\beta+\gamma<1 \& \beta, \gamma>0 \& t>0$

Barycentric Coordinates

- Expand $\boldsymbol{R}_{\mathrm{o}}+t \boldsymbol{R}_{\mathrm{d}}=\boldsymbol{A}+\beta(\boldsymbol{B}-\boldsymbol{A})+\gamma(\boldsymbol{C}-\boldsymbol{A})$

$$
\left.\begin{array}{l}
R_{\mathrm{ox}}+t R_{\mathrm{dx}}=A_{\mathrm{x}}+\beta\left(B_{\mathrm{x}}-A_{\mathrm{x}}\right)+\gamma\left(C_{\mathrm{x}}-A_{\mathrm{x}}\right) \\
R_{\mathrm{oy}}+t R_{\mathrm{dy}}=A_{\mathrm{y}}+\beta\left(B_{\mathrm{y}}-A_{\mathrm{y}}\right)+\gamma\left(C_{\mathrm{y}}-A_{\mathrm{y}}\right) \\
R_{\mathrm{oz}}+t R_{\mathrm{dz}}=A_{\mathrm{z}}+\beta\left(B_{\mathrm{z}}-A_{\mathrm{z}}\right)+\gamma\left(C_{\mathrm{z}}-A_{\mathrm{z}}\right)
\end{array}\right\} \begin{aligned}
& 3 \text { equations, } \\
& 3 \text { unknowns }
\end{aligned}
$$

- Regroup and write in matrix form

$$
\left[\begin{array}{ccc}
A_{x}-B_{x} & A_{x}-C_{x} & R_{d x} \\
A_{y}-B_{y} & A_{y}-C_{y} & R_{d y} \\
A_{z}-B_{z} & A_{z}-C_{z} & R_{d z}
\end{array}\right]\left[\begin{array}{c}
\beta \\
\gamma \\
t
\end{array}\right]=\left[\begin{array}{c}
A_{x}-R_{o x} \\
A_{y}-R_{o y} \\
A_{z}-R_{o z}
\end{array}\right]
$$

Barycentric Coordinates

- Use Cramer's Rule to solve for t, β and γ

$$
\left.\begin{aligned}
& \beta=\frac{\left|\begin{array}{ccc}
A_{x}-R_{o x} & A_{x}-C_{x} & R_{d x} \\
A_{y}-R_{o y} & A_{y}-C_{y} & R_{d y} \\
A_{z}-R_{o z} & A_{z}-C_{z} & R_{d z}
\end{array}\right| \quad|A|}{|A|} \begin{array}{l}
|A| \\
t=\frac{\left|\begin{array}{ccc}
A_{x}-B_{x} & A_{x}-R_{o x} & R_{d x} \\
A_{y}-B_{y} & A_{y}-R_{o y} & R_{d y} \\
A_{z}-B_{z} & A_{z}-R_{o z} & R_{d z}
\end{array}\right|}{|A|} \begin{array}{l}
A_{x}-B_{x} \\
A_{y}-B_{y} \\
A_{z}-C_{x}
\end{array} A_{y}-C_{y}-R_{o x} \\
A_{y}-R_{o y} \\
A_{z}-C_{z}
\end{array} A_{z}-R_{o z}
\end{aligned} \right\rvert\, \quad \begin{aligned}
& \text { | denotes the } \\
& \text { determinant }
\end{aligned}
$$

Advantages of Barycentric Intersection

- Efficient
- No need to store plane equation
- Barycentric coordinates are useful for linear interpolation of normal vectors, texture coordinates, and other attributes at the vertices
- For example, the interpolated normal at P is

$$
\boldsymbol{N}_{P}=(1-\beta-\gamma) \boldsymbol{N}_{A}+\beta \boldsymbol{N}_{\boldsymbol{B}}+\gamma \boldsymbol{N}_{\boldsymbol{C}} \text { (should do a normalization) }
$$

The "Epsilon" Problem

- Should not accept intersection for very small positive t
- May falsely intersect the surface at the ray origin
- Method 1: Use an epsilon value $\varepsilon>0$, and accept an intersection only if its $t>\varepsilon$
- Method 2: When a new ray is spawned, advanced the ray origin by an epsilon distance ε in the ray direction

The "Epsilon" Problem

without ε

with ε

Ray Tracing Acceleration

- Most ray tracing research have been in
- Acceleration techniques for ray-scene intersection
- Extension to simulate more complete global illumination (in a later lecture)
- Real-time ray tracing!
- Some common acceleration techniques
- Adaptive recursion depth control
- First-hit speed-up using z-buffer method
- Can use item buffer to identify first-hit object at each pixel
- Bounding volumes
- Bounding volume hierarchies
- Spatial subdivision

Bounding Volumes

- Use a simple shape to enclose each more complex object
- If ray does not intersect bounding volume, no need to test complex object (quick reject)
- Simple shapes are efficient for testing ray intersection
- Common bounding volumes are spheres, AABBs (axis-aligned bounding boxes), and OBBs (oriented bounding boxes)
- However, there is trade-off between intersection efficiency and tightness

Bounding Volume Hierarchy

- Can organized bounding volumes into hierarchy

- However, good hierarchies are usually constructed manually

Spatial Subdivision

- Subdivide 3D space into regions, and associate each region with a list of objects that occupy (fully or partially) the region
- When a ray is traced into a region, query the object list and perform intersection tests with the objects
- Since we are looking for the nearest intersection, the ray should be traced in a front-to-back order through the regions
- Common spatial subdivisions for ray tracing
- Uniform grid
- Octree
- BSP

Octree

- Each cubic region is conditionally and recursively subdivided into 8 equal sub-regions
- Different possible conditions for subdivision
- Scheme 1: Subdivide a cell if it is occupied by more than one object
- Scheme 2: Subdivide a cell if it is occupied by any object until the maximum allowable depth
- Ray-cell intersection can be easily tested in front-to-back order

Octree Cell Subdivision Schemes

Scheme 1: Subdivide a cell if it is occupied by more than one object

Scheme 2: Subdivide a cell if it is occupied by any object until the maximum allowable depth

Limitations Of Whitted Ray Tracing

- Hard shadows
- Inconsistency between highlights and reflections
- Sharp reflections but blurred highlights
- Aliasing (jaggies)

Limitations Of Whitted Ray Tracing

- Compute only a subset of light transports
- For example, cannot simulate caustics, and color bleeding

Caustics caused by focusing of light

Color bleeding caused by diffuse-to-diffuse interactions

Distributed Ray Tracing

- For each pixel, shoot multiple random rays
- At each intersection, the reflection, refraction \& shadow rays are randomly perturbed (according to some

Distributed Ray Tracing

- Able to simulate the followings
- Area lights and soft shadows
- Blurred reflections and refractions
- Anti-aliasing
- Depth of field
- Motion blur
- However, it does not increase the subset of light transports simulated by Whitted ray tracing

Area Lights \& Soft Shadows

Glossy Reflections

Depth Of Field Effect \& Motion Blur

End of Lecture 9

